This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Association of Improved Cardiac Function in Donors with C34T Mutation of the AMP Deaminase 1 Gene

A. H. Y. Yuen^a; M. H. Yacoub^a; E. J. Birks^a; K. K. Kalsi^a; P. H. Johnson^a; R. T. Smolenski^a Heart Science Centre, Imperial College at Harefield Hospital, Harefield, Middlesex, UK

To cite this Article Yuen, A. H. Y. , Yacoub, M. H. , Birks, E. J. , Kalsi, K. K. , Johnson, P. H. and Smolenski, R. T. (2005) 'Association of Improved Cardiac Function in Donors with C34T Mutation of the AMP Deaminase 1 Gene', Nucleosides, Nucleotides and Nucleic Acids, 24: 4, 275 - 277

To link to this Article: DOI: 10.1081/NCN-200059709 URL: http://dx.doi.org/10.1081/NCN-200059709

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Nucleosides, Nucleotides, and Nucleic Acids, 24 (4):275–277, (2005)

Copyright © Taylor & Francis, Inc. ISSN: 1525-7770 print/ 1532-2335 online DOI: 10.1081/NCN-200059709

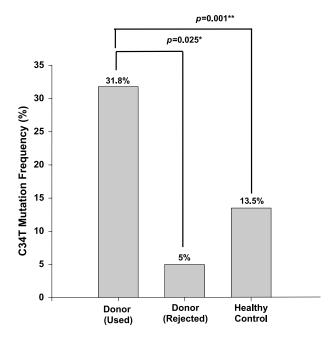
ASSOCIATION OF IMPROVED CARDIAC FUNCTION IN DONORS WITH C34T MUTATION OF THE AMP DEAMINASE 1 GENE

A. H. Y. Yuen, M. H. Yacoub, E. J. Birks, K. K. Kalsi, P. H. Johnson, and R. T. Smolenski — Heart Science Centre, Imperial College at Harefield Hospital, Harefield, Middlesex, UK

Possession of the C34T mutation in AMP deaminase (AMPD1) gene has been shown to be associated with attenuation of the progression of heart failure and improved survival in ischemic heart disease. In this study, we examined the frequency of the mutation in the heart with good and poor cardiac function and in healthy controls. We found that there was no difference in the frequency of the mutation between the patients with heart failure and healthy controls. However, the frequency of the mutation in the healthy donor hearts was much higher when compared to healthy controls or donors with failing hearts.

Keywords AMP Deaminase, C34T Mutation, Heart Transplantation, Organ Donors

INTRODUCTION


Shortage of donors is the main factor limiting number of cardiac transplantation.^[1] It is estimated that in 20–30% of cases, cardiac function of potential donors is so severely affected that hearts cannot be used. The mechanisms for this remains poorly understood. Possession of the C34T mutation in AMPD1 gene has been shown to be associated with attenuation of the progression of heart failure^[2] and improved survival in ischemia heart disease.^[3] In this study, we examined whether the C34T mutation of AMPD1 is protective for cardiac function in donors.

MATERIALS AND METHODS

The presence of the C34T mutation was assayed by single-stranded conformational polymorphism (SSCP) and restriction fragment length polymorphism

Received 12 August 2004, accepted 10 March 2005.

Address correspondence to A. H. Y. Yuen, Heart Science Centre, Imperial College at Harefield Hospital, Harefield, Middlesex, UB9 6JH, UK; E-mail: ada.yuen@imperial.ac.uk

FIGURE 1 The C34T mutation frequency in each group. Statistical significance was calculated using Fisher's exact test (*) or χ^2 test (**).

(RFLP) analysis on heart biopsies. Donors were assessed by tranoesophageal echocardiography at the time of harvesting. Those with an ejection fraction >40% (associated with good hemodynamics) were used for transplantation (n = 22) and a right ventricular biopsy taken at the time of transplantation. Donors with the ejection fraction <40% (associated with poor hemodynamics) were considered unsuitable for transplantation (rejected donors, n = 10). A small piece from the left apex was taken for analysis. Blood samples from 207 healthy volunteers were also genotyped.

RESULTS

The frequency of C34T mutation in each group was calculated according to the number of mutant alleles (Figure 1). The frequency of the C34T mutation in the used donors (31.8%) was significantly higher than in rejected donors (5%, p = 0.025) or in healthy control group (13.5%, p = 0.001). However, there was no difference between heart failure and healthy control group.

DISCUSSION

The high frequency of C34T AMPD1 mutation in heart donors with good ventricular function strongly suggests that this mutation protects cardiac function.

Therefore, we conclude that high incidence of AMPD1 gene mutation in donors with good cardiac function could have clinical implications to donor selection and may help to develop new treatment of heart failure.

ACKNOWLEDGMENT

This study was supported by the Magdi Yacoub Institute and the British Heart Foundation. RTS is Senior Lecturer at the Department of Biochemistry, Medical University of Gdansk, Poland.

REFERENCES

- Mullins, P.A.; Scott, J.P.; Dunning, J.J.; Aravot, D.J.; Large, S.R.; Wallwork, J.; Schofield, P.M. Cardiac transplant waiting lists, donor shortage and retransplantation and implications for using donor hearts. Am. J. Cardiol. 1991, 68, 408–409.
- Loh, E.; Rebbeck, T.R.; Mahoney, P.D.; DeNofrio, D.; Swain, J.L.; Holmes, E.W. Common variant in AMPD1 gene predicts improved clinical outcome in patients with heart failure. Circulation 1999, 99, 1422–1425.
- Anderson, J.L.; Habashi, J.; Carlquist, J.F.; Muhlestein, J.B.; Horne, B.D.; Bair, T.L.; Pearson, R.R.; Hart, N.
 A common variant of the AMPD1 gene predicts improved cardiovascular survival in patients with coronary artery disease. J. Am. Coll. Cardiol. 2000, 36, 1248–1252.